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A B S T R A C T

Smallholder farmers, who hold 84% of the approximately 570 million farms worldwide, are vital stakeholders
in the process of sustainable agricultural intensification, but often lack the capital to invest in sustainable
farming practices. Solar-powered drip irrigation has the potential to increase crop productivity for minimal
water use, but these systems are prohibitively expensive for smallholders. Reducing the life cycle cost (LCC)
of solar-powered drip irrigation systems could make this technology more accessible, enabling smallholders to
increase their household incomes and contribute to greater global food security. This paper presents the Solar-
Powered Drip Irrigation Optimal Performance model (SDrOP), which optimizes solar-powered drip irrigation
system designs. Unlike existing commercial software, SDrOP models the behavior of the entire system and
simulates seasonal performance to reduce LCC while maintaining operational reliability. SDrOP improves on
previous design optimization frameworks by taking in all location-dependent parameters as inputs, which
makes the model independent of case specifics and, therefore, broadly applicable. To demonstrate the model
theory, the sensitivity of the optimal design to field area, the system reliability constraint, and varying weather
conditions are explored for a Moroccan olive orchard case study. The results demonstrate opportunities for
system cost reduction, including operational changes to reduce the system power requirement, irrigation pump
opportunities for the smallholder market, and reductions in system reliability when it is shown to have minimal
impact on crop yield. When benchmarked against a commercially available software, SDrOP was able to reduce
system LCC by up to 56%. The simulated performance of an SDrOP optimal design was benchmarked against
operational data from an existing field site, and was shown to be capable of operating 92% of the recorded
irrigation events. These results indicate that SDrOP offers an advantage over existing software as it produces
significantly reduced cost designs that can operate in real-world conditions.
1. Introduction

Food security is a growing global issue accelerated by the effects of
rapid population growth and climate change. The increasing demand
for food puts additional strain on agricultural practices; sustainable
agricultural intensification, or increasing the productivity of existing
cropland, is necessary to meet the growing demand [1]. A vital stake-
holder to engage in this process is smallholder farmers, who typically
work plots of land that are two hectares or less and hold 84% of the
approximately 570 million farms worldwide [2]. Smallholders have a
vast knowledge of local conditions and methods to maintain biodi-
versity, but are often forced to use unsustainable practices due to a

∗ Corresponding author at: Massachusetts Institute of Technology (MIT), USA.
E-mail addresses: fionag@mit.edu (F. Grant), csheline@mit.edu (C. Sheline), sokol@mit.edu (J. Sokol), samrose@mit.edu (S. Amrose), ebrownll@mit.edu

(E. Brownell), v.nangia@cgiar.org (V. Nangia), awinter@mit.edu (A.G. Winter V).
1 Co-lead authors, contributed equally to this work.

lack of access to capital, information, or agricultural inputs [1]. As
a result, smallholders tend to be cost-sensitive and risk-averse [1,3].
Studies have shown that smallholdings can be more productive per
hectare than large farms [4,5], and when they are able to increase their
income, smallholders have been shown to stimulate rural economies
by spending locally and creating labor jobs [5]. Increasing sustainable,
efficient irrigation methods among smallholders can enable them to
increase crop productivity and household incomes [6,7].

Drip irrigation is a micro-irrigation technology that releases a con-
trolled volume of water and nutrients to the root zone of the crop
through a network of pipes and drip emitters. It has been shown
306-2619/© 2022 Elsevier Ltd. All rights reserved.
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Fig. 1. A solar-powered drip irrigation system consists of a power system, a pump, a
hydraulic pipe network, and emitters. The subsystems are highly interdependent during
system operation.

that replacing inefficient irrigation methods with drip irrigation could
reduce water wasted during irrigation by 20 to 76% and increase crop
water productivity by 15% [8]. By adopting drip irrigation, smallhold-
ers could increase crop productivity while conserving water. Despite
these benefits, drip irrigation is not widely adopted among smallhold-
ers because of its high capital cost and increased labor requirements
compared to traditional irrigation methods, such as flood and furrow
irrigation [1,9,10]. In addition, the majority of smallholders live in
rural areas and have limited access to fuel and electricity [3]. This
means they require off-grid power sources, which have high upfront
costs. The aim of this work is to create an optimization design tool
that minimizes the cost of solar-powered drip irrigation systems for
smallholder farmers.

A solar-powered drip system (Fig. 1) is comprised of subsystems
that have a cyclic interdependence as the system operates. The local
weather patterns, soil properties, and the selected crop determine the
crop water demand; the water demand and hydraulic network layout
determine the required pumping power; and the power available to
operate the pump is determined by the power system capacity and
the local weather patterns. Existing commercial tools for designing
drip irrigation systems model these subsystems independently, with-
out accounting for their dynamic interactions, and have component
limitations. EPANet [11], IrriCAD [12], and IrriPro [13] can simulate
the pipe network hydraulic behavior, but cannot simulate crop water
demand, select a pump, or size an off-grid power system. Industrial
pump companies, such as Lorentz, Grundfos, and Xylem, have web
applications that facilitate pump selection, but these tools are limited
to the pump catalogs of each company [14–16]. Lorentz also offers
Compass [14], a desktop tool specifically for sizing solar-powered
pumping systems. While Compass does take in some location-specific
parameters, it does not account for the relationship between variation
in crop water demand and variation in available solar power when
sizing the solar panel array. Each of these software tools can accurately
capture the behavior of a single subsystem, but they lack a coherent
way to leverage the subsystem relationships to reduce the overall drip
system cost. A holistic tool would model the behavior of all subsystems
and capture subsystem interactions by simulating system operation
over an irrigation season for any location and crop type. Previous work
conducted by the authors has shown that this holistic, generalizable
design approach can lead to a significant reduction in drip system
capital cost compared to designs produced by commercial software
tools [17,18].

There is a growing body of work on holistic modeling and optimiza-
tion of drip irrigation and solar-powered pumping systems. Multiple
studies explore the feasibility of these technologies in the context of
smallholder farming, which provides valuable insights on the con-
straints and needs of smallholders, but these studies do not attempt to
2

reduce cost or optimize the system design [19,20]. Further work has
been conducted to optimize the system design by modeling the behav-
ior and interactions of multiple subsystems. Bakelli, et al. [21] presents
a cost-optimization method for sizing a solar-powered pumping system,
accounting for the dynamics of solar power availability and water stor-
age in an elevated tank. Muhsen, et al. [22] presents a multi-objective
optimization scheme for sizing solar-powered pumping systems. These
papers include system life cycle cost models and useful measures of
performance reliability that depend on system operation; both concepts
are essential to a holistic design tool. The one drawback is that these
optimization approaches are difficult to generalize outside of the cases
presented in the studies. Bakelli, et al. [21] uses a polynomial fit to
experimental hydraulic data, rather than an analytical fluid mechanics
model, which makes it difficult to apply to other hydraulic network
configurations. Muhsen, et al. [22] uses parametric component models
that are more broadly applicable. However, the weights used on each
objective function in their multi-objective optimization are determined
by a survey of three experts whose area of expertise is not provided,
making it difficult to generalize this approach. The conditions small-
holders face are varied and highly location-dependent. In designing
systems for smallholders, who are both cost-sensitive and risk-averse,
there is a need for a holistic design framework that is agnostic to
case-specific details and, therefore, easily generalizable to a variety of
cases.

This paper presents the Solar-Powered Drip Irrigation Optimal Per-
formance model (SDrOP), a holistic model that accurately captures
subsystem relationships and employs a particle swarm optimization
(PSO) algorithm to produce optimal low-cost, solar-powered drip sys-
tem designs. SDrOP takes in all location-dependent parameters as in-
puts, making it broadly applicable to a variety of contexts. In this paper,
SDrOP is used to determine the sensitivity of the system architecture to
these location-dependent inputs, and the model is benchmarked against
a commercial software. The analytical results demonstrate opportuni-
ties for system cost reduction, which could improve the accessibility
of drip irrigation to smallholder farmers. These include changes to
the system operation to reduce operating power and power system
capacity, market opportunities for irrigation pumps that specifically
meet the needs of smallholders, and slight reductions in system re-
liability in cases where it is shown to have a minimal impact on
crop yield. Previous work has been done by our research group to
develop a novel pressure compensating (PC) emitter that can reduce
the required pumping power by 30%–60% compared to commercial
emitters, while maintaining comparable flow performance [23,24]. The
reduction in pumping power can enable drip system designs with
smaller, less expensive pumps and power systems. These emitters are
used for the analyses presented in this paper to examine how their novel
performance characteristics can be leveraged to reduce overall system
cost.

Morocco was selected as a representative candidate country for
studying the adoption of solar-powered drip irrigation by smallholders
and demonstrating the SDrOP model capabilities. As a country in the
Middle East and North Africa (MENA) region, it has an arid climate
and high solar irradiance, and the Moroccan government is actively
engaged in promoting the adoption of drip irrigation technology among
smallholders through subsidies [10]. A representative field of olive
trees in Marrakesh, Morocco is employed as a case study to demonstrate
the model theory through simulations and a small-scale field experi-
ment. The operational data from this experiment are used to validate
the predicted performance of an optimal system design produced by
SDrOP. These analytical and experimental results give confidence that
SDrOP can produce feasible designs for real-world conditions and pro-
vide insights on system cost trade-offs to component selection, system
operation, reliability, and weather variability, some of which are case-
specific and others that can be applied more broadly. SDrOP may be a
useful tool for companies and contractors who design drip systems, and
the analytical framework presented in this paper may be of interest to
researchers designing stand-alone, solar-powered pumping systems.
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Fig. 2. The SDrOP model architecture and its three computational phases: Case Definition, Design, and Performance. The modules in the first two phases represent the four
subsystems of a drip irrigation system, and the last phase assesses the performance of the proposed system design by simulating the system operation. The optimization loop
iterates between the Design and Performance phases to select an optimal low-cost design. The user inputs (outlined black boxes), are location-specific and include the cost data for
each component. The code outputs (shaded boxes) show how the crop water demand (evapotranspiration) and the hydraulic network operating curve are translated into a system
operating point, which is then used to select a pump and design a power system. The design is analyzed by simulating its operation and crop yield over a growing season and
computing its life cycle cost (LCC) and lifetime profit.
2. Analytical theory and implementation

2.1. SDrOp model architecture

SDrOP is structured as a set of six modules, implemented in MAT-
LAB, that capture the behavior of the drip irrigation subsystems. The
agronomy module captures the relationship between the crops and
local environmental conditions; the hydraulics module simulates the
behavior of the hydraulic network; the pump module links the hy-
draulic load to the required pumping power; the power system module
relates the power requirement to the local weather patterns; the oper-
ation module synthesizes these subsystem relationships in a simulation
of the system operation over a growing season; and the yield module
estimates the crop yield based on the system performance. The opti-
mization loop iterates through permutations of pump and power system
designs to converge on an optimal combination. The objective of the
optimization can be set to either minimize the system life cycle cost
(LCC) or maximize its lifetime profit. This architecture enables SDrOP
to capture the behavior of a solar-powered drip system and leverage
the subsystem relationships when optimizing the system design.

Smallholder farming use cases can vary widely depending on the
crops selected, field layout, farming practices, and local environmen-
tal conditions. SDrOP is structured to accommodate this variability,
making it a broadly applicable design tool. This is accomplished by
decoupling location-specific information for a given case from the
physics-based theory that describes the drip system behavior. The
modules described above fall into three distinct computational phases:
Case Definition, Design, and Performance (Fig. 2). In each phase, the
inputs are location-specific, but the theory describing the behavior of
each subsystem is parametric and, therefore, generalizable.

The inputs to the Case Definition phase include local weather data,
local soil and crop properties, crop spacing on the field, the depth of
3

the water source, equipment specifications for locally-available com-
ponents, and estimates of the local prices of the components and crop
produce. The parameters needed to determine the crop water demand
are computed using an agronomic model, and the drip system operating
point is computed with an iterative fluid network calculation. This
information is passed into the Design phase, where a pump is selected
and a power system is sized using equipment specifications for locally-
available components. Finally, in the Performance phase, the operation
of the proposed drip system design is simulated over the course of a
full growing season for the selected crop. This phase also computes the
system LCC, the lifetime profit based on estimated crop yield, and the
system reliability in delivering water to the crop. The details of each
module and the optimization are presented in the following sections.

2.2. Subsystem module definitions

The following sections present the fundamental theory behind each
of the six SDrOP modules. The specific parameters that define a case
are given in Section 2.4.

2.2.1. Agronomy module
The crop evapotranspiration, or the amount of water that is released

from the soil and the crop leaves, is used to compute the crop water
demand for the drip system. The evapotranspiration calculation within
the agronomy module is validated in the FAO Irrigation and Drainage
Paper No. 56 [25].

The crop evapotranspiration (𝐸𝑇𝑐 [mm/day]) is calculated as

𝐸𝑇𝑐 = 𝐾𝑐 𝐸𝑇0, (1)

where 𝐾𝑐 is a crop coefficient and 𝐸𝑇0 is the reference evapotranspira-
tion [mm/day]. 𝐸𝑇 is calculated for a grass reference crop of 0.12 m
0
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height using the standard method of the Penman–Monteith equation:

𝐸𝑇0 =
0.408𝛿(𝐺𝑛𝑒𝑡 −𝐻𝐹 𝑠) + 𝛾

900
𝑇 + 273

𝑢2(𝑒𝑠 − 𝑒𝑎)

𝛿 + 𝛾(1 + 0.34𝑢2)
, (2)

where 𝐺𝑛𝑒𝑡 is the net irradiance at the crop surface [MJ/m2day], 𝐻𝐹 𝑠 is
the soil heat flux density [MJ/m2day], 𝑇 is the daily or hourly average
air temperature at 2 m height [◦C], 𝑢2 is the wind speed at 2 m height
[m/s], 𝑒𝑠 is the saturation vapor pressure [kPa] at air temperature 𝑇 ,
𝑒𝑎 is the actual vapor pressure [kPa], 𝛿 is the slope of vapor pressure
curve [kPa/◦C] at air temperature 𝑇 , and 𝛾 = 0.665 × 10−3𝑝𝑎𝑡𝑚 is the
psychrometric constant [kPa/◦C]. The atmospheric pressure [kPa], 𝑝𝑎𝑡𝑚,
is determined from altitude using a simplification of the ideal gas law
and assuming an atmosphere at 20 ◦C. Temperature, relative humidity,
solar irradiance, and wind speed are generally available for weather
stations in publicly accessible databases, such as ASHRAE weather
files [26]. For this work, the weather data used are IWEC2 [27], and
they were selected from a station that was closest to the location of
interest.

Eq. (1) assumes a single crop coefficient, 𝐾𝑐 , which is a function
of the crop and its development stage. The length of the development
stages and 𝐾𝑐 values corresponding to each stage of development –
𝐾𝑐,𝑖𝑛𝑖, 𝐾𝑐,𝑚𝑖𝑑 , 𝐾𝑐,𝑒𝑛𝑑 , for the beginning, middle, and end stages, respec-
tively – are defined in [25]. The single 𝐾𝑐 assumes a well watered
standard crop that is subjected to typical growing conditions and a sub-
humid climate with a mean minimum relative humidity (𝑅𝐻𝑚𝑖𝑛,𝑚𝑒𝑎𝑛) of
45% and a mean wind speed at 2 m (𝑢2,𝑚𝑒𝑎𝑛) of 2 m/s. For 𝑅𝐻𝑚𝑖𝑛,𝑚𝑒𝑎𝑛
and 𝑢2,𝑚𝑒𝑎𝑛 values outside of the sub-humid conditions, the coefficients
are adjusted given

𝐾𝑐,𝑚𝑖𝑑∕𝑒𝑛𝑑,𝑎𝑑𝑗 = 𝐾𝑐,𝑚𝑖𝑑∕𝑒𝑛𝑑 + (0.04(𝑢2,𝑚𝑒𝑎𝑛 − 2)

−0.004(𝑅𝐻𝑚𝑖𝑛,𝑚𝑒𝑎𝑛 − 45))
(ℎ
3

)0.3
, (3)

where 𝐾𝑐,𝑚𝑖𝑑∕𝑒𝑛𝑑 is the sub-humid standard value for 𝐾𝑐,𝑚𝑖𝑑 or 𝐾𝑐,𝑒𝑛𝑑 ,
ℎ is the mean plant height during the mid/late-season stage [m], and
values of 𝑢2,𝑚𝑒𝑎𝑛 and 𝑅𝐻𝑚𝑖𝑛,𝑚𝑒𝑎𝑛 are calculated from weather inputs for
the corresponding growth stage. Note that field-specific calibration of
the 𝐾𝑐 is needed for accurate crop evapotranspiration calculations.

The agronomy module calculates daily 𝐸𝑇𝑐 and its variation with
weather conditions (details are provided in the SI Section 1). Capturing
these variations allows for the design of a more exact system size
compared to using a single average value for crop evapotranspiration
and water demand [17].

2.2.2. Hydraulics module
The hydraulics module computes the system operating point based

on the specifications of the hydraulic network in the case definition.
The hydraulic network consists of a main pipe that originates at the
pump, submain pipes that branch off of the main, and laterals that
connect to the submain and run the length of the crop row. It is assumed
that the emitters are equally spaced along each lateral at the crop
spacing given in the case definition [17]. For all cases presented herein,
the hydraulic network is modeled with pressure compensating (PC)
emitters. The system operating point is the pressure head and flow
rate required to operate the hydraulic network. The module iteratively
converges on the system flow rate for a range of input pressures, which
results in the steady state system operating curve shown in Fig. 3.
Major pressure losses in the pipe network are calculated using the
Darcy–Weisbach equation:

𝛥𝑝𝑚𝑎𝑗𝑜𝑟 = 𝑓𝑑
𝐿
𝐷

𝜌𝑣2

2
, (4)

where 𝑓𝑑 is the Darcy friction factor, 𝐿 and 𝐷 are the pipe length [m]
and inner diameter [m], 𝜌 is the density of water [kg∕m2], and 𝑣 is the
flow velocity [m/s]. Minor pressure losses are estimated using

𝛥𝑝 = 𝐾
𝜌𝑣2

, (5)
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𝑚𝑖𝑛𝑜𝑟 𝑚𝑖𝑛𝑜𝑟 2
Fig. 3. The hydraulic system curve of a drip system using pressure compensating
(PC) emitters. The curve shows the pressure compensating behavior introduced by the
emitters. The flow rate increases with pressure until the last emitter has reached its
activation pressure, at which point the flow rate remains constant. The ideal, minimum
power operating point for the system is just after this slope change (circle).

where 𝐾𝑚𝑖𝑛𝑜𝑟 is the minor loss coefficient. Minor losses are modeled for
tee fittings at the start of each submain and lateral, where 𝐾𝑚𝑖𝑛𝑜𝑟 = 1 for
tee losses in branch flow [28]. Minor losses due to additional fittings,
such as valves and elbows, are estimated to be constant at 0.01 bar.
This estimate for minor losses is based on previous field trail data used
to validate the hydraulics module [18]. The Darcy friction factor, 𝑓𝑑 ,
is computed using the Swamee–Jain formula [29]:

𝑓𝑑 = 0.25
[𝑙𝑜𝑔10(

𝜖
3.7𝐷 + 5.74

𝑅𝑒0.9𝐷
)]2

, (6)

where 𝑅𝑒𝐷 is the Reynolds number and 𝜖 is the pipe roughness [m].
The pressure losses across the sand and disk filters are calculated using

𝛥𝑝𝑓 = 𝑎𝑒𝑏𝑄𝑠𝑦𝑠 , (7)

which is an empirical estimation from the manufacturer [30]. Here,
𝛥𝑝𝑓 is pressure loss across the filter [𝑏𝑎𝑟], 𝑄𝑠𝑦𝑠 is the system flow
rate [m3∕h], and 𝑎 and 𝑏 are constants that can be found in filter
specification sheets. The fertigation unit is assumed to be a mixing
tank connected in parallel with the main pipe, which is based on
low-pressure, commercially available units [31].

The flow rate of the PC drip emitters is approximately constant for
emitter pressures, 𝑝𝑒𝑚, above their activation pressure, 𝑝𝑎𝑐𝑡 [𝑏𝑎𝑟]. The
emitter flow rate is therefore modeled as linear when 0 < 𝑝𝑒𝑚 < 𝑝𝑎𝑐𝑡, and
as 𝑄𝑒𝑚 = 𝑘𝑒𝑚𝑝

𝑥𝑒𝑚
𝑒𝑚 when 𝑝𝑒𝑚 ≥ 𝑝𝑎𝑐𝑡, where 𝑘𝑒𝑚 is the flow coefficient and

𝑥𝑒𝑚 is the pressure compensation exponent. Pressure losses due to water
flowing over the protrusion of the emitter into the lateral, which are
small compared to the pressure drop inside the emitter, are neglected.

Due to the pressure compensating behavior of the emitters, the
system curve has a unique shape (Fig. 3). As the system pressure
increases, the system flow rate increases until all of the emitters in the
network are at or above their activation pressure and emitting water
at their nominally constant flow rate. The inflection point between
these two regimes is the ideal, minimum power operating point for
the system, henceforth called the system operating point. Increasing
pressure beyond this point will result in over-pressurizing the pipes
without producing a higher flow rate. Because hydraulic power is the
product of the system pressure head and flow rate, 𝑃ℎ𝑦𝑑 = 𝐻𝑠𝑦𝑠 ×
𝑄𝑠𝑦𝑠, operating above this point wastes power. The hydraulics module
identifies the inflection point on the system curve and passes the system
operating point into the pump module.
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2.2.3. Pump module
The pump module determines the required pumping power for the

system operating point calculated in the hydraulics module by selecting
pumps from a database of locally-available pump architectures. Inte-
grating the pump database with SDrOP allows for a wide range of pump
architectures to be searched for any given case, which facilitates the
selection of feasible pumps. For a pump to be feasible, the system flow
rate must be within the pump POR, which is the region of pump flow
rates that are within 70 to 120% of the best efficiency point (BEP) flow
rate. This operating region is recommended by pump manufacturers
to ensure the pump lasts its rated lifetime [32]. Requiring that the
system operating point fall within the POR of any selected pumps also
ensures that the pumps operate near their BEPs, which in turn enables
the design of smaller, less expensive power systems.

The pump database contains the characteristic curves of each pump,
which are the performance (pressure head-flow rate) curve, the
efficiency-flow rate curve, and the power-flow rate curve. In general,
a pump will operate at the pressure head and flow rate where the
system curve and pump performance curve intersect. However, it is not
guaranteed that the system curve will intersect the pump performance
curve exactly at the system operating point. To ensure that the selected
pumps operate the hydraulic network at the desired point, it is assumed
that each pump is paired with a motor driver that can change the motor
speed. Changing the pump motor speed shifts the pump characteristic
curves, which expands the operating range of the pump. This enables
the pump module to determine the pumping power of the pump
operating point that exactly matches the system operating point.

For each feasible pump, the motor speed is selected such that the
corresponding pump performance curve intersects the system curve at
the system operating point (Fig. 4). The affinity laws for centrifugal
pumps describe how the characteristic curves shift with varying motor
speed:
𝑄𝑛𝑒𝑤
𝑄𝑟𝑒𝑓

=
𝑁𝑛𝑒𝑤
𝑁𝑟𝑒𝑓

, (8)

𝐻𝑛𝑒𝑤
𝐻𝑟𝑒𝑓

=
(

𝑁𝑛𝑒𝑤
𝑁𝑟𝑒𝑓

)2
(9)

and
𝑃𝑛𝑒𝑤
𝑃𝑟𝑒𝑓

=
(

𝑁𝑛𝑒𝑤
𝑁𝑟𝑒𝑓

)3
, (10)

where 𝑄 is flow rate, 𝐻 is pressure head, 𝑃 is power, and 𝑁 is
rotational speed. Here, the 𝑟𝑒𝑓 values correspond to the curves at the
reference motor speed and the 𝑛𝑒𝑤 values correspond to the curves
at the new motor speed. These laws are established scaling relation-
ships that use the known characteristic curves at one speed to pre-
dict the characteristic curves at another speed for a given impeller
diameter [33].

Fig. 4 provides a visualization of how the affinity laws are used
to identify the required pumping power. The reference pressure head,
𝐻𝑟𝑒𝑓 , is the pressure head corresponding to 𝑄𝑠𝑦𝑠 on the pump per-
formance curve from the database. The corresponding motor speed,
the desired system operating pressure head identified in the hydraulics
module, and 𝐻𝑟𝑒𝑓 are used in Eq. (9) to compute the desired pump
speed, 𝑁𝑛𝑒𝑤. This is the speed of the pump characteristic curve that will
exactly intersect the system operating point. Once the desired pump
speed is known, the pump characteristic curves from the database can
be used as the reference to compute the characteristic curves at the
desired pump speed using the affinity laws (Eqs. (8)–(10)). The new
power-flow curve is then used to identify the required pumping power
for the system. A similar process is employed to compute the pump
operating point when pumping water to a tank for a system design
that includes water storage (details of the pump-to-tank simulation are
included in the SI Section 3).

The SDrOP pump database consists of centrifugal, surface pumps
with AC motors. Centrifugal pumps are ubiquitous [34] and, based on
5

Fig. 4. A visualization of how the pump operating point and pumping power are
identified using the affinity laws. The system flow rate, 𝑄𝑠𝑦𝑠, is used to select a set of
feasible pumps from the database such that the system flow rate is within 70%–120%
of the pump BEP flow rate (square). Each pump is assumed to be paired with a motor
driver that can be used to shift the characteristic curves, expanding the pump operating
range. The affinity laws are used to determine the desired characteristic curves (solid
line) that intersect with the system operating point (asterisk) based on the reference
curves (dotted line).

conversations with local contractors, the performance characteristics
of the selected pumps were representative of locally-available pumps
in Morocco [10] (see Appendix A.3 for the list of pump models in
the database). When simulating pump operation, the water reservoir
and suction pipe geometries are used to ensure that the net positive
suction head required (NPSHr) by the pump is less than the calculated
net positive suction head available (NPSHa) [35]. This ensures that
cavitation will not occur during pump operation [34]. The cost of
specific pump models, when known, are included in the pump database.
Otherwise, the pump cost is assumed to scale linearly with the maxi-
mum pump operating power. The pump module passes the cost and
required pumping power of each feasible pump into the power system
module and operation simulation.

2.2.4. Power system module
The power system module sets up the calculation of the power

available, 𝑃𝑎𝑣𝑎𝑖𝑙, to the rest of the system by calculating the power
output from a unit panel area, 𝑃𝑃𝑉 , based on the local weather. The
power system includes solar panels with energy storage options of
batteries and/ or a water storage tank. 𝑃𝑃𝑉 is calculated using a method
called the modified single-diode model (summarized in the SI Sec-
tion 2) [36]. The modified single-diode model allows for the calculation
of the current–voltage curve for all temperatures and irradiances. The
𝑃𝑃𝑉 for each temperature and irradiance condition is calculated as

𝑃𝑃𝑉 = max(𝐼 𝑉 )∕𝐴𝑝𝑎𝑛𝑒𝑙 , (11)

where max(𝐼 𝑉 ) is the maximum power point (MPP) [W] of the current–
voltage curve and 𝐴𝑝𝑎𝑛𝑒𝑙 is the area of a single solar panel [m2], given
by the panel manufacturer datasheet. Using the MPP assumes that the
system has maximum power point tracking (MPPT) capabilities. Calcu-
lating 𝑃𝑃𝑉 as varying with the local weather conditions allows SDrOP to
simulate operation and energy flow throughout the season and produce
a location-specific power availability profile for the system.

2.2.5. Operation simulation
The operation simulation is a logic loop that calculates where en-

ergy and water will flow for each time step of the irrigation season. This
allows for the performance of a design to be evaluated in terms of how
much of the crop water demand it can deliver. There are four different
energy paths that can be taken to deliver water to the crops and two
paths to store energy. These six paths are illustrated in Fig. 5(a).
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T

Fig. 5. An illustration of the logic flow loop and representation of the simulated
system operation. In (a) the energy and water flow diagram is shown. There are six
flow paths of energy connecting the photovoltaic (PV) system (power, 𝑃𝑃𝑉 ), controller
(power, 𝑃𝑎𝑣𝑎𝑖𝑙), battery, pump (power, 𝑃𝑝𝑢𝑚𝑝), water storage tank, and field. The arrowed
connections corresponding to each of the energy paths are designated by numbers
1 – 6 (e.g., the first path is made up of all the connections labeled with a 1 and

path 1 is bolded as an example). As described in the boxed conditional statement,
flow paths are checked in numbered order at each time step and activated based on
the weather-dependent available power (𝑃𝑎𝑣𝑎𝑖𝑙) and the state of the battery, tank, and
irrigation of the field, designated as the state of charge (SOC), state of fill (SOF), state of
irrigation (SOI), and irrigation demand (𝐼𝑑𝑒𝑚). In (b) the power values and normalized
SOC, SOF, and SOI for two days of operation on a representative small field illustrate
the conditions under which each flow path might be activated.

Within the logic loop the irrigation demand, or the amount of water
the irrigation system must deliver to meet the crop water demand, is
calculated at the start of each day in m3 by rearranging the soil water
balance defined in the FAO Irrigation and Drainage Paper No. 56 [25]
as

𝐼𝑑𝑒𝑚,𝑛 = 𝑓𝑤 𝐴𝑓𝑖𝑒𝑙𝑑 (𝐷𝑟,𝑛−1 − 𝑃𝑟𝑛 + 𝑅𝑂𝑛 − 𝑅𝐴𝑊𝑛 + 𝐸𝑇𝑐,𝑛)∕1000. (12)

Here, the soil water level is set to the minimum needed to not stress the
crop (𝐷𝑟,𝑛 = 𝑅𝐴𝑊𝑛), 𝑛 is the day of the irrigation season, 𝐷𝑟 is the water
lost to the root zone of the crop, or the root zone depletion [mm], 𝑃𝑟 is
precipitation [mm], 𝑅𝑂 is runoff [mm], 𝑓𝑤 is the soil wetted fraction
(which is set to 0.3 for drip irrigation [25]), and 𝐴𝑓𝑖𝑒𝑙𝑑 is the field
area [m2]. 𝑅𝐴𝑊 is the readily available water [mm], or the amount of
water in the root zone that the plant can uptake most efficiently. This
soil water balance assumes a deep groundwater table, so there is no
capillary rise, it neglects deep percolation, and 𝐼𝑑𝑒𝑚,𝑛 is calculated such
6

that the 𝐷𝑟,𝑛 is at 𝑅𝐴𝑊𝑛 and 𝐷𝑟,𝑛−1 is at the 𝐷𝑟,𝑛 of the previous day. 𝑆
𝑅𝐴𝑊𝑛 is defined as

𝑅𝐴𝑊𝑛 = 𝑑𝑛 𝑇𝐴𝑊 , (13)

where 𝑇𝐴𝑊 is the total available water that the crop can extract
from the soil [mm], a constant that depends on the depth of the crop
roots and soil properties defined in the Case Definition. The depletion
fraction on day 𝑛, 𝑑𝑛, is calculated by adjusting for daily 𝐸𝑇𝑐 as defined
in Table 22 of [25].

𝑑𝑛 = 𝑑𝑐𝑜𝑛𝑠𝑡 + 0.04 (5 − 𝐸𝑇𝑐,𝑛), (14)

where 𝑑𝑐𝑜𝑛𝑠𝑡 is the constant crop dependant depletion fraction assuming
𝐸𝑇𝑐 = 5 mm∕𝑑𝑎𝑦.

The available power is calculated throughout the day as

𝑃𝑎𝑣𝑎𝑖𝑙,𝑖 = 𝑃𝑃𝑉 ,𝑖 𝜂𝑀𝑃𝑃𝑇 𝜂𝑐𝑜𝑛𝑣 𝐴𝑃𝑉 , (15)

where 𝑖 is the sub-daily time interval indices (dependent on the res-
olution of the input weather data), 𝜂𝑀𝑃𝑃𝑇 = 98% and 𝜂𝑐𝑜𝑛𝑣 = 95% are
the assumed efficiencies for the MPPT unit and the electrical converter,
and 𝐴𝑃𝑉 is the solar panel area for the system design [m2].

𝑃𝑎𝑣𝑎𝑖𝑙,𝑖 can go towards charging the battery or powering the pump
(𝑃𝑝𝑢𝑚𝑝), and water from the pump can go towards filling the tank or
irrigating the crops on the field. State vectors, namely the state of
charge (𝑆𝑂𝐶) of the battery [𝑊 ℎ], state of fill (𝑆𝑂𝐹 ) of the tank [m3],
and state of irrigation (𝑆𝑂𝐼) of the field [m3], are calculated in the
operation logic loop to keep track of where energy and water are used
or stored at each time interval.

Before the irrigation demand is met, the time remaining to irrigate
[s], 𝑡𝑟𝑖, is calculated as

𝑡𝑟𝑖,𝑖 = 𝑚𝑖𝑛
( 𝐼𝑑𝑒𝑚,𝑛 − 𝑆𝑂𝐼𝑖−1

𝑄𝑠𝑦𝑠
, 𝛥𝑡

)

, (16)

where 𝛥𝑡 is the time interval. The calculation of 𝑡𝑟𝑖, and other time
variables, allows for other paths to be used during the same time step
once a state vector is filled. Note that 𝑆𝑂𝐼 is initialized at zero and is
set to zero at the start of each day.

The conditions required to select each flow path are checked in
order, following a fixed operation priority as depicted in the boxed
conditional statement in Fig. 5(a). If the irrigation demand has not been
met, the first check is if there is enough 𝑃𝑎𝑣𝑎𝑖𝑙,𝑖 to deliver water through
path 1 . Path 1 fills the tank and irrigates at the same time. During
this path, the time to fill the tank, 𝑡𝑡𝑓 [s], is calculated as

𝑡𝑡𝑓 ,𝑖 = min
(

𝐶𝑡𝑎𝑛𝑘 − 𝑆𝑂𝐹𝑖−1
𝑄𝑡𝑎𝑛𝑘,𝑖 −𝑄𝑠𝑦𝑠

, 𝑡𝑟𝑖,𝑖

)

, (17)

where 𝐶𝑡𝑎𝑛𝑘 is the tank capacity [m3] and 𝑄𝑡𝑎𝑛𝑘 is the flow rate from
the pump going into the tank [m3/s] (details of the tank flow rate
calculation are provided in the SI Section 3). The state equations for
path 1 are

𝑆𝑂𝐼𝑖 = 𝑆𝑂𝐼𝑖−1 +𝑄𝑠𝑦𝑠 𝑡𝑟𝑖,𝑖, (18)

𝑆𝑂𝐹𝑖 = 𝑆𝑂𝐹𝑖−1 + (𝑄𝑡𝑎𝑛𝑘,𝑖 −𝑄𝑠𝑦𝑠) 𝑡𝑡𝑓 ,𝑖, (19)

and

𝑆𝑂𝐶𝑖 = 𝑆𝑂𝐶𝑖−1 + (𝑃𝑎𝑣𝑎𝑖𝑙,𝑖 − 𝑃𝑝𝑢𝑚𝑝,𝑖) 𝑡𝑡𝑓 ,𝑖. (20)

Fig. 5(b) illustrates the relative state of 𝑃𝑎𝑣𝑎𝑖𝑙,𝑖, 𝑆𝑂𝐶, 𝑆𝑂𝐹 , and 𝑆𝑂𝐼
corresponding to each of the flow paths over a period of two days. For
example, path 1 is selected mid-way through day one when there is
sufficient 𝑃𝑎𝑣𝑎𝑖𝑙,𝑖, 𝑆𝑂𝐹 < 1, and 𝑆𝑂𝐼 < 1.

If there is not enough 𝑃𝑎𝑣𝑎𝑖𝑙,𝑖 to complete path 1 , the next check is
if there is enough 𝑃𝑎𝑣𝑎𝑖𝑙,𝑖 to irrigate the field directly through path 2 .

he state equations for path 2 are Eq. (18), as well as
𝑂𝐹𝑖 = 𝑆𝑂𝐹𝑡−1 (21)
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and

𝑆𝑂𝐶𝑖 = 𝑆𝑂𝐶𝑖−1 + (𝑃𝑎𝑣𝑎𝑖𝑙,𝑖 − 𝑃𝑝𝑢𝑚𝑝) 𝑡𝑟𝑖,𝑖. (22)

If there is not enough 𝑃𝑎𝑣𝑎𝑖𝑙 for path 1 or 2 , there is not enough
power from the panels to directly deliver water to the field. If the
irrigation demand is still not met, the tank and the battery storage
are checked. The time to drain the tank, 𝑡𝑡𝑑𝑡 [s], and the time to drain
battery, 𝑡𝑡𝑑𝑏 [s], are calculated as

𝑡𝑡𝑑𝑡,𝑖 = 𝑚𝑖𝑛
(

0 − 𝑆𝑂𝐹𝑖−1
𝑄𝑡𝑎𝑛𝑘,𝑖 −𝑄𝑠𝑦𝑠

, 𝑡𝑟𝑖,𝑖

)

(23)

nd

𝑡𝑑𝑏,𝑖 = 𝑚𝑖𝑛
(

0.5𝐶𝑏𝑎𝑡𝑡 − 𝑆𝑂𝐶𝑖−1
𝑃𝑎𝑣𝑎𝑖𝑙,𝑖 − 𝑃𝑝𝑢𝑚𝑝,𝑖∕𝜂𝑏𝑎𝑡𝑡

, 𝑡𝑟𝑖,𝑖

)

, (24)

where 𝐶𝑏𝑎𝑡𝑡 is the battery capacity [J], 𝜂𝑏𝑎𝑡𝑡 = 85% is the assumed
battery efficiency, and the maximum depth of discharge for the battery
is set to 50%. If the tank or battery are already at their minimum
capacities then 𝑡𝑡𝑑𝑡 and 𝑡𝑡𝑑𝑏 are zero and pathways 3 and 4 are not
used.

If there is enough water stored in the tank, path 3 is used with
the state equations

𝑆𝑂𝐼𝑖 = 𝑆𝑂𝐼𝑖−1 +𝑄𝑠𝑦𝑠 𝑡𝑡𝑑𝑡,𝑖, (25)

𝑂𝐹𝑖 = 𝑆𝑂𝐹𝑖−1 −𝑄𝑠𝑦𝑠 𝑡𝑡𝑑𝑡,𝑖, (26)

nd

𝑂𝐶𝑖 = 𝑆𝑂𝐶𝑖−1 + 𝑃𝑎𝑣𝑎𝑖𝑙,𝑖 𝑡𝑡𝑑𝑡,𝑖. (27)

If there is enough energy stored in the battery, path 4 is used with
tate equations including Eq. (21), as well as

𝑂𝐼𝑖 = 𝑆𝑂𝐼𝑖−1 +𝑄𝑠𝑦𝑠 𝑡𝑡𝑑𝑏 (28)

nd

𝑂𝐶𝑖 = 𝑆𝑂𝐶𝑖−1 + (𝑃𝑎𝑣𝑎𝑖𝑙,𝑖 − 𝑃𝑝𝑢𝑚𝑝∕𝜂𝑏𝑎𝑡𝑡) 𝑡𝑡𝑑𝑏. (29)

If there is not enough power or energy storage to run the other
aths, or the irrigation demand for the day has already been met, the
𝑂𝐼𝑖 is set to 𝑆𝑂𝐼𝑖−1. The loop checks if the tank and battery are full,
nd if not, it tries to fill them using paths 5 and 6 , respectively. For

path 5 , the 𝑡𝑡𝑓 is updated as

𝑡𝑡𝑓 = 𝑚𝑖𝑛
(

𝐶𝑡𝑎𝑛𝑘 − 𝑆𝑂𝐹𝑖−1
𝑄𝑡𝑎𝑛𝑘,𝑖

, 𝛥𝑡
)

. (30)

The state equations to fill the tank for path 5 are

𝑆𝑂𝐹𝑖 = 𝑆𝑂𝐹𝑖−1 +𝑄𝑡𝑎𝑛𝑘,𝑖 𝑡𝑡𝑓 (31)

and

𝑆𝑂𝐶𝑖 = 𝑆𝑂𝐶𝑖−1 + (𝑃𝑎𝑣𝑎𝑖𝑙,𝑖 − 𝑃𝑡𝑎𝑛𝑘,𝑖) 𝑡𝑡𝑓 . (32)

The system uses any remaining power to charge the battery through
path 6 . The state equations are Eq. (21) and

𝑆𝑂𝐶𝑖 = 𝑆𝑂𝐶𝑖−1 + 𝑃𝑎𝑣𝑎𝑖𝑙,𝑖 𝛥𝑡. (33)

For all the paths, any extra power is used to charge the battery until
the battery is fully charged. If there is any extra power after path 6
and the battery is fully charged, the power is unused.

The operation is defined such that any energy storage is drained to
irrigate at the start of each day and later filled when there is enough
solar energy available. For example, in Fig. 5(b) at the start of both days
the irrigation demand has not been met but there is no solar power
available yet, so paths 3 and 4 are used to irrigate, draining the
energy storage. Towards the middle of each day, once there is enough
𝑃 , the simulation uses paths 1 and 2 to irrigate and fill the
7

𝑎𝑣𝑎𝑖𝑙 s
energy storage if the irrigation demand has not yet been met (day one)
or it uses paths 5 and 6 to fill the energy storage if the irrigation
demand has already been met (day two).

At the end of each day, the daily amount of irrigation that has been
delivered [m3] by the system, 𝐼𝑑𝑒𝑙, is determined as

𝐼𝑑𝑒𝑙,𝑛 = 𝑆𝑂𝐼𝑖,𝑒𝑛𝑑 , (34)

where 𝑖, 𝑒𝑛𝑑 is the last time interval of the day. The adjusted crop
evapotranspiration, 𝐸𝑇𝑎, in mm and 𝐷𝑟 are calculated at the end of
the day as

𝐸𝑇𝑎,𝑛 = 𝐾𝑠,𝑛 𝐸𝑇𝑐,𝑛 (35)

and

𝐷𝑟,𝑛 = 𝐷𝑟,𝑛−1 − 𝑃𝑟𝑛 + 𝑅𝑂𝑛 − 𝐼𝑑𝑒𝑙,𝑛 + 𝐸𝑇𝑎,𝑛, (36)

here 𝐷𝑟 is constrained such that 0 ≤ 𝐷𝑟,𝑛 ≤ 𝑇𝐴𝑊 and 𝐾𝑠 is the water
stress coefficient which accounts for the water stress felt by the crop. If
𝐷𝑟 is less than or equal to 𝑅𝐴𝑊 , then 𝐾𝑠 = 1. If the 𝐷𝑟 is greater than
𝑅𝐴𝑊 , then 𝐾𝑠 is calculated as

𝐾𝑠,𝑛 =
𝑇𝐴𝑊 −𝐷𝑟,𝑛

(1 − 𝑑𝑛) 𝑇𝐴𝑊
. (37)

The operation simulation defines the relationship between the crop
rrigation demand and the irrigation that can be delivered by the
pecified system design. The system performance affects crop water
tress through 𝐸𝑇𝑎, and in turn the crop growth and yield, as well as
he system reliability.

.2.6. Crop yield module
The yield module determines the crop yield and revenue for the

iven case definition based on the amount of water the system is able
o deliver. The yield is calculated by assuming a relationship between
ield and crop water use and adjusting the maximum crop yield, 𝑌𝑚,
ased on that relationship. 𝑌𝑚 is calculated using the agro-ecological
one method following FAO Irrigation and Drainage Paper No. 33 [37],
hich assumes the crop experiences no water stress, no fertilizer stress,
egligible soil salinity and acidity, and no pest conditions. The adjusted
ield, 𝑌𝑎, is derived from an empirical yield versus evapotranspiration
urve [38,39],

𝑌𝑎
𝑌𝑚

= 𝑌𝑟𝑒𝑙

(
∑𝑛𝑡𝑜𝑡

𝑛=1 𝐸𝑇𝑎,𝑛
∑𝑛𝑡𝑜𝑡

𝑛=1 𝐸𝑇𝑐,𝑛

)

∕100, (38)

where 𝑌𝑟𝑒𝑙 is the yield-curve that relates relative percent yield to
relative percent crop evapotranspiration, and 𝑛𝑡𝑜𝑡 is the total number
of days in the irrigation season.

Fig. 6 shows the 𝑌𝑟𝑒𝑙 curve for olives, which are used in this study.
The curve depicts the drought resistant nature of the olive crop as
it stays at or above 100%2 yield for 85% or greater relative crop
evapotranspiration, corresponding to an average water stress, 𝐾𝑠, less
than 0.15. The parabolic shape of the curve shows that small reductions
in evapotranspiration, related to reductions in irrigation, cause an
almost undetectable reduction in yield, implying an irrigation scheme
that does not meet 100% of the crop water demand could be used in the
design process. The curve is based on the olive cultivar variety Picual
in Cordoba, Spain, but was compared to other varieties and locations
and found to fall within the margins of error. For crops that do not
have an empirically derived yield versus evapotranspiration curve, a
yield response to evapotranspiration equation is used to calculate 𝑌𝑎
(detailed in the SI Section 4) [37].

2 Multiple years of data with full water application were collected, and the
verage of those years was selected as the 100% yield case, but there were
ome water applications that went above this average 100% yield value.
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Fig. 6. The empirical yield curve for olives. The curve show the percent change in yield
as a function of the change in crop evapotranspiration. Olives are shown to be water
stress resistant crops: a small decrease in relative evapotranspiration causes negligible
change in the yield.

2.3. Design optimization

The goal of the optimization is to produce a location-specific, low-
cost design for the given case definition. The optimization loop iterates
through permutations of pumps and power system capacities (Fig. 2),
simulating the performance of each proposed design as described in
Section 2.2.5. The performance of a design is characterized by the
reliability with which it can meet the crop water demand over the
season. The LCC of the design is computed using location-specific cost
data, and the revenue from the crop yield is used to determined the
lifetime profit. For the sake of computational efficiency, it is assumed
that one season is representative of all crop seasons over the course
of the system lifetime. The objective of the optimization can be set to
either minimize the LCC or maximize the lifetime profit. The design
variables are the pump, solar panel area, tank capacity, and battery
capacity.

The LCC model includes the LCC of each component, including the
hydraulic network components, which do not vary in the optimization.
The component costs are based on local contractor and equipment
prices from the given location. For this study, the cost data were
collected from economic reports, compiled by local research partners,
and from contractor invoices for solar-powered drip systems installed in
Morocco [10]. Detailed component costs are included in Appendix A.1.
The local crop prices were collected from FAOSTAT [40].

The cost objective function is defined as

𝒎𝒊𝒏 𝐿𝐶𝐶 =
∑

𝑟
(1 + 𝑘𝑖)𝐼𝐶𝑟 +𝑀𝐶𝑟 + 𝑅𝐶𝑟 , (39)

where

𝐼𝐶𝑟 = 𝑈𝐶𝑟 𝐶𝑟 , (40)

𝑀𝐶𝑟 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑘𝑚,𝑟 𝐼𝐶𝑟

(

1+𝐹𝑅
𝐼𝑅−𝐹𝑅

)

(

1 −
(

1+𝐹𝑅
1+𝐼𝑅

)𝐿𝑇
)

if 𝐼𝑅 ≠ 𝐹𝑅
𝑘𝑚,𝑟 𝐼𝐶𝑟 𝐿𝑇

if 𝐼𝑅 = 𝐹𝑅

(41)

and

𝑅𝐶𝑟 = 𝐼𝐶𝑟

𝑀𝑟
∑

𝑗=1

( 1 + 𝐹𝑅
1 + 𝐼𝑅

)

(

𝐿𝑇 𝑗
𝑀𝑟+1

)

. (42)

Here, 𝐼𝐶𝑟, 𝑀𝐶𝑟, and 𝑅𝐶𝑟, are the initial cost and the net present value
maintenance and replacement costs over the system lifetime [USD] of
the 𝑟th component. These equations are consistent with LCC models
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Table 1
Component lifetime and number of replacements over 20-year system lifetime.

Component Lifetime [yrs] Replacement number

PV panels 20 1 (10%)a

Battery 2 9
Tank 25 0
Pump 5 3
Laterals and emitters 10 1
Additional hydraulic componentsb 20 0

aSolar panel lifetime is set to 20 years, but 10% of panel area is replaced after 10
years to simulate panel degradation.
bIncludes main, submain, pipe fittings, filters, and fertigation unit.

used for similar systems [21,22]. The initial cost of the 𝑟th component
is computed as the unit cost, 𝑈𝐶𝑟, multiplied by the component ca-
pacity, 𝐶𝑟 (Eq. (40)). The installation cost is computed as a fraction
of the initial system cost using the installation cost coefficient, 𝑘𝑖.
The maintenance cost is computed as a fraction of the initial cost
(Eq. (41)) using the maintenance cost coefficient of the 𝑟th component,
𝑘𝑚,𝑟. These cost coefficients are based on cost data collected from
local contractor invoices (values provided in Appendix A.1). Inflation
rate, 𝐹𝑅, and interest rate, 𝐼𝑅, are both constants provided in [22].
The system lifetime, 𝐿𝑇 , is set to be 20 years, which is the expected
lifetime of the solar panels. Each component has a specified number of
replacements within that lifetime, 𝑀𝑟, which are shown in Table 1. The
panels are assigned a 10% area replacement after 10 years to simulate
panel efficiency degradation. The component lifetimes and replacement
frequency were based on manufacturer recommendations. The cost
of each replacement is calculated in Eq. (42) using the replacement
number counting index 𝑗. A more detailed description of the calculation
of each component cost is presented in [41,42].

The profit objective function is defined as

𝒎𝒂𝒙 𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑅𝑒𝑣 − 𝐿𝐶𝐶 , (43)

where

𝑅𝑒𝑣 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑌𝑎 𝐴𝑘𝑐𝑝
(

1+𝐹𝑅
𝐼𝑅−𝐹𝑅

)

(

1 −
(

1+𝐹𝑅
1+𝐼𝑅

)𝐿𝑇
)

if 𝐼𝑅 ≠ 𝐹𝑅
𝑌𝑎 𝐴𝑓𝑖𝑒𝑙𝑑 𝑘𝑐𝑝 𝐿𝑇

if 𝐼𝑅 = 𝐹𝑅.

(44)

Eq. (44) defines the net present value revenue, where 𝑌𝑎 is the crop
yield [kg∕ha], 𝐴𝑓𝑖𝑒𝑙𝑑 is the field area [ha], and 𝑘𝑐𝑝 is the crop price
coefficient [USD/kg], which is a location-dependent constant [40].

The primary constraint in the optimization problem concerns the
system reliability. The system reliability is defined as the loss of load
probability (LLP) [22]

𝐿𝐿𝑃 =
∑

𝐼𝑑𝑒𝑚 −
∑

𝐼𝑑𝑒𝑙
∑

𝐼𝑑𝑒𝑚
, (45)

which is the fraction of the total irrigation demand that a design fails
to meet over the course of a growing season. The cost optimization
is subject to a minimum reliability constraint, 𝐿𝐿𝑃 ≤ 𝐿𝐿𝑃𝑇 , which
means that the LLP for an optimal design cannot exceed a certain loss of
load probability threshold (LLPT). An LLPT of 0 means that the design
must meet the crop water demand with 100% reliability, and an LLPT
of 1 means there is no reliability constraint imposed. A reduction in the
system reliability will lead to a reduction in the water delivered by the
system, which can increase the crop water stress and reduce the yield.
Therefore, LLPT is proportional to the amount of crop water stress the
designer is willing to tolerate based on agronomic considerations. For
the profit optimization, the revenue from the crop yield depends on the
amount of water the system delivers, so system reliability is intrinsic to
the profit objective function.

Both the cost and profit optimization schemes are subject to bounds
on the design variable capacities to ensure physically reasonable de-
signs are produced. This includes a minimum panel area and, for any
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Table 2
Baseline case definition.

Location Marrakech, Morocco

Field area 1 ha
Weather data type, resolution Typical meteorological year

(TMY), hourly
Soil texture clay loam
Crop olive
Crop × Row spacing 5 m × 5 m
Pipe network inner diameters
(main, submain, lateral)

83 mm, 59 mm, 16 mm

Emitter flow, activation pressure 8 Lph, 0.15 bar
Emitter type, number per crop low-pressure PC, 2
Water source height/deptha 1 m
Loss of load probability threshold (LLPT) 0.15

aA positive value means the water source is located above the pump inlet.

design with non-zero tank and battery capacities, a minimum tank and
battery capacity to avoid unrealistically small components. A maximum
panel area, tank capacity, and battery capacity are set to reflect spacial
and economic constraints of a small farm. In any design with a tank, the
tank height is constrained by the head capacity of the selected pump
to ensure that the pump is capable of filling its corresponding tank.

The optimization algorithm is a particle swarm optimization (PSO)
[43]. The PSO framework was selected for its ability to handle discrete
variables, such as the pump models in the pump database. A PSO is a
heuristic algorithm in which a randomly generated set of solutions, or
‘‘swarm’’, iteratively propagates through the design space to converge
on an optimal solution, while adhering to imposed constraints and
algorithm parameters [44]. In this work, a solution to the optimization
problem consists of a pump, panel area, tank capacity, and battery
capacity, which together comprise a system design for the given case
definition. While there is no way to mathematically guarantee that a
heuristic algorithm converges on a global optimum, if the algorithm
consistently converges on a solution after multiple runs of the same
test case, this is a sufficient indication that the solution is optimal [44].
For the simulations presented here, the PSO swarm size was 20 and the
convergence margin was 10 USD (see Appendix A.2 for all parameters).
The algorithm parameters, such as the swarm size and convergence
criterion, were selected based on tests of repeatable convergence for
a range of drip system cases [41,42].

2.4. Baseline case

A one hectare olive orchard in Marrakech, Morocco was defined as
a representative case and used for the analyses presented in this paper.
Table 2 details this case definition, hereafter called the baseline case.
Unless otherwise stated, the inputs used in SDrOP are those used in the
baseline case.

The system operating point of the baseline case is a 5.1 m pressure
head and a 6.9 m3∕h flow rate. The pump database and solar panel
arameters are representative of locally-available pumps and panels.
n LLPT of 0.15 was selected because olive trees are relatively water
tress resistant, and can produce 100% yield with a relative evaporation
f 85% (Fig. 6).

. Optimization results and sensitivity analysis

.1. Profit and cost optimization comparison

Although smallholder farmers are most sensitive to upfront cost,
redicting the full financial commitment and profit generated by the
rip systems can provide insight on impactful financing options, long-
erm affordability, and overall adoption of drip irrigation for farmers.
o understand how the optimal system design and performance metrics
f yield, LLP, and LCC change based on the optimization objective, sys-
ems designed by minimizing LCC were compared to systems designed
9

Table 3
Profit- and cost-optimized design results for various field sizes.

Field 0.125 0.25 0.5 0.75 1 1.5 2Area [ha]

Hyd. 9 17 37 61 95 193 354
Pwr. [W]

Pump
Max. 42 49 230 230 240 540 830
Pwr. [W]

Pump 29 46 74 118 180 295 636
Pwr. [W]

Cost

PV 0.30 0.49 0.80 1.28 1.91 3.18 6.80
Area [m2]

LLP 0.140 0.143 0.137 0.147 0.149 0.147 0.147

LCC 0.887 1.426 2.601 3.700 4.861 7.658 10.901
[103 USD]

Yield 9,926 9,925 9,926 9,924 9,924 9,924 9,924
[kg/ha]

Profit

PV 0.34 0.55 0.97 1.54 2.29 3.56 7.65
Area [m2]

LLP 0.066 0.075 0.064 0.068 0.071 0.080 0.080

LCC 0.919 1.479 2.680 3.827 5.058 7.974 11.312
[103 USD]

Yield 9,944 9,942 9,945 9,944 9,943 9,940 9,940
[kg/ha]

by maximizing lifetime profit. The comparison is presented in Table 3.
The analysis was conducted for seven field sizes, ranging from 0.25
to 2 ha. The same hydraulic layout was used for both optimization
objectives, so the system hydraulic power and pump power for each
field size are the same between the cost and profit optimizations.

The optimal power system design changed based on the optimiza-
tion objective. In this analysis, energy storage options were never
found to be optimal, but the optimal solar panel area is larger for
profit-optimized systems. This means the cost-optimized designs are not
able to deliver as much water as the profit-optimized designs, which
can be seen in the larger LLP values and smaller yields for the cost-
optimized systems compared to the profit optimized systems (Table 3).
This indicates that the LLPT for the cost optimization imposes a less
strict constraint on system reliability than the profit objective function.
In other words, the profit optimization requires more reliable systems,
and therefore larger and more expensive power systems. However,
for the cases presented here, the difference in the results is small.
The LCC for the cost-optimal systems is 3%–4% smaller than for the
profit-optimal systems, and the increase in yield for the more reliable,
profit-optimal systems is only 0.2% greater than for the cost-optimal
systems. The relative LCC reduction provided by the cost optimization
is an order of magnitude greater than the relative increase in yield
provided by the profit optimization. Because the goal of this work is
to reduce system cost to improve the accessibility of drip irrigation
for smallholder farmers, the cost optimization was chosen over the
profit optimization for subsequent analyses. The cost optimization is
employed to analyze the sensitivity of the LCC to case definition inputs
and the system reliability constraint.

3.2. Sensitivity analysis

SDrOP was used to explore the sensitivity of the optimal design LCC
to field area, the reliability constraint, and weather variation. The goal
of these sensitivity analyses is to gain insights on the implementation of
solar-powered drip irrigation systems. The results have implications for
optimal component selection, irrigation scheduling, system robustness
to varying environmental factors, and the use of the low-pressure PC

emitters.
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Fig. 7. The sensitivity of the optimum life cycle cost (LCC) to varying field area. For
each field, the bars on the left break down the LCC into component costs. The bars on
the right break down the LCC into initial, maintenance, and replacement costs. The loss
of load probability (LLP) is plotted as circles with a right axis. The threshold (LLPT)
was set to 0.15 for all cases.

Fig. 8. The life cycle cost per hectare of cost-optimal systems for a range of field areas,
broken up into components (hydraulics, pump, PV). Below the 1 ha case, the nonlinear
behavior of the LCC per hectare curve is driven by the limited availability of pumps
for low-pressure operating points. Above the 1 ha case, the nonlinearity is driven by
the cubic scaling of hydraulic power with system flow rate.

3.2.1. Field area
The sensitivity of the optimal design to changes in field area was

analyzed for the baseline case with field areas of 0.125–2 ha. Fig. 7
shows the resulting optimal design LCCs, broken down by component
costs and initial, maintenance, and replacement cost. The LLP is plotted
for each design, indicating its seasonal reliability. The pump and solar
panel details for each design are shown in Table 3.

For all field areas, the hydraulic network is the largest component
cost, the initial cost makes up the majority of the LCC, and all of
the optimal designs are direct-drive systems without energy storage
(Fig. 7). The hydraulics contribute between 54%–77% of the LCC for all
cases. The initial cost accounts for 50–70% of the LCC. The replacement
cost, which includes hydraulic, solar panel, and pump replacements
over the system lifetime, was higher than the maintenance cost across
field areas. The maintenance costs are sensitive to the local labor costs,
which tend to be low in Morocco [10]. For all of the field areas, the LLP
is just below 0.15, indicating that approaching the LLPT reduces the
LCC, as expected. The fact that the LLP of the designs does not exactly
reach the LLPT suggests that the marginal reduction in LCC gained by
slightly increasing LLP to match LLPT is too small to result in further
iterations before the solution converges.
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Fig. 8 presents the LCC per hectare as well as the hydraulic, pump,
and panel cost per hectare for each field area. The plot shows that LCC
per hectare is nonlinear with field area. The LCC per hectare decreases
with increasing field area, until it reaches a minimum at one hectare,
and then increases with increasing field area. The hydraulic cost per
hectare remains relatively constant with field area, and therefore does
not contribute to the nonlinear behavior of the LCC per hectare curve.

The LCC per hectare relationship with field area has two distinct
regions. The first is an economies of scale region leading up to the one
hectare case that is driven by the per hectare cost of the pump and
power system (Fig. 8). A similar pump model was selected for systems
on the smaller fields, as indicated by maximum pump power ( Table 3),
namely for the 0.125 ha and 0.25 ha cases, and for the 0.5, 0.75 and
1 ha cases. The smaller systems used similar pumps because the novel,
low-pressure PC emitters resulted in drip system designs with relatively
low-pressure, high-flow rate operating points. These operating points
are not typically within the PORs of existing centrifugal pumps, but the
motor driver expands the operating range of the pumps to accommo-
date these abnormal operating points. Therefore, the optimal designs
for the smaller fields share pump architectures. It became evident,
while populating the pump database and surveying pump catalogs of
local Moroccan distributors, that there is a lack of low-cost pumps
that can operate efficiently at these points. Pumps selected for smaller
fields will be oversized, and therefore overpriced, and could potentially
degrade more quickly if they are primarily operated outside their POR.
This indicates a possible gap in the local pump market for the small
farm irrigation using low-pressure drip emitters.

The second region of the LCC per hectare plot is the diseconomies
of scale region that begins above one hectare. In this region, fluid
mechanics drives the diseconomies of scale as field area increases.
For all cases, it is assumed that the entire field is irrigated at once,
which means that the system flow rate increases with field area. This
leads to an increased pressure drop because pipe frictional losses scale
with the flow rate squared. Hydraulic power is the product of flow
rate and pressure, so the hydraulic power scales with the cube of the
flow rate. As such, the power system capacity and cost increase with
increasing field area. Additionally, when pump costs were unknown,
it was assumed that the pump cost scaled linearly with pump power.
Therefore, the strong scaling relationship between operating power and
flow rate is magnified by the pump cost for field areas larger than one
hectare.

3.2.2. Reliability constraint
The sensitivity of the optimal LCC to LLPT was analyzed, and it

was shown that small adjustments in the reliability constraint can lead
to a significant reduction in the system LCC. Fig. 9(a) shows that
LCC drops precipitously (by 25%–49%) between LLPT values of 0 to
0.1 and remains relatively constant between 0.1 and the maximum
LLPT. This means that a 10% relaxation of the reliability constraint
significantly reduces the optimal system cost. The large cost reduction
comes from a change in the selected components: optimal systems for
which the LLPT is 0 all incorporate energy storage, whereas for an LLPT
of 0.1 or higher, all the optimal systems are direct-drive. Requiring
high reliability (LLPT = 0) forces the system to meet spikes in the
irrigation demand (Fig. 9(b)). To meet this demand in full, a large
solar array or energy storage capacity is required, which significantly
increases the system cost. The fact that energy storage is required in the
optimal design when LLPT is 0 means the optimization found it was less
expensive to meet the additional irrigation demand with energy storage
than by solely increasing the solar panel area. Increasing the LLPT from
0 to 0.1 meant that the system no longer had to meet the large spikes
in irrigation demand (Fig. 9(b)), and therefore, the optimal design had
a less expensive, direct-drive power system.

The shape of the LLPT sensitivity plot illustrates how relaxing the re-
liability constraint affects the daily irrigation demand. The initial steep

decrease in power system capacity and LCC is the result of increasing
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Fig. 9. Sensitivity of the LCC of the cost-optimal design to the reliability constraint: (a)
demonstrates the normalized LCC as a function of the loss of load probability threshold
(LLPT) for the baseline case with field areas of 0.125, 1, and 2 ha — the LCC for each
field area is normalized to the LLPT = 0 case; (b) shows the water delivered over
the season for the baseline case with an LLPT of 0 and 0.1; and (c) demonstrates the
change in total irrigation demand and water delivered for the cost-optimal designs with
varying LLPT.

LLPT from 0 to 0.1, which alleviates the requirement that the system
meet the high-demand days. However, as LLPT is increased further, ir-
rigation demand also increases (Fig. 9(c)); if the full irrigation demand
is not met by the system at the end of one day, the irrigation demand on
the following day will be higher. This is because the soil water balance
calculation uses the water level from the previous day. Therefore, if
the irrigation demand is not met, the soil will be drier, requiring more
water to achieve the correct saturation in the root zone (Eq. (12) and
(36)). In other words, the daily irrigation demand compounds every
time the system fails to deliver enough water to the crops. This results
in the leveling off of the optimal system LCC with increasing LLPT
(Fig. 9(a)), which indicates that increasing the LLPT above 0.1 results
in diminishing returns for minimizing the LCC. The curves illustrate
the trade-off between reducing the irrigation delivered – which enables
a smaller power system capacity with a lower LCC – and increasing
irrigation demand – which requires a larger power system capacity with
a higher LCC. Because the irrigation demand increases as the reliability
requirement relaxes, the power system capacity cannot decrease as
steeply past a certain point (Fig. 9(c)).

The point of greatest return on the LLPT sensitivity plot is the
point where the steep decrease in LCC meets the plateau (Fig. 9(a)).
The location of this point on the plot is directly determined by the
case definition parameters, namely the selected crop, local weather
patterns, soil properties, and the field area. The water stress resistance
of the crop, the soil mechanics, and the weather over the growing
season will determine how much the LLPT can be increased without
impacting the crop yield. Therefore, the selected crop and location
will influence the horizontal position of the point of greatest return
on the plot. The field area and local weather patterns will determine
the relative magnitude of possible cost savings. As shown in Fig. 9(a),
the magnitude of the LCC reduction is greater for larger fields. This
is because the power requirement scales nonlinearly with field area
(Section 3.2.1). In addition, the local weather patterns will dictate the
availability of solar irradiance, which will influence the power system
capacity. If the availability of solar irradiance for the given location
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Fig. 10. The sensitivity of the optimal LCC to varying weather conditions for the
baseline case. The stacked bar is LCC broken into component costs. The typical
meteorological year (TMY) data for weather used in the baseline case was compared
to historical data from 2014 and 2016 (both drought years in Morocco) as well
as measured data from 2018. All of the datasets had hourly resolution, except the
measured data, which was taken at both five-minute and hourly intervals.

is low or highly variable, the optimal power system capacity must
remain large to consistently provide enough power. In these cases, the
opportunity for LCC reduction by increasing LLPT will be diminished.
As such, the field area and local weather will influence the vertical
location of the point of greatest return on the plot.

3.2.3. Weather variation
SDrOP was used to determine the sensitivity of the cost-optimal

designs to variations in local weather patterns (Fig. 10). For this
analysis, it is assumed that the yearly weather is known a priori and
that it remains unchanged for the 20-year lifetime of the system.

The baseline case was run with the TMY data and compared to
historical weather data taken from a National Institute for Agricultural
Research (INRA) station in Marrakesh, Morocco in 2014 and 2016 and
measured data from a Moroccan field trial site 2 km away from the
INRA station in 2018 [18]. The 2014 and 2016 data were included
because Morocco experienced a drought in both years [45,46]. Fig. 10
shows the LCC of the optimal designs produced using each weather
dataset. Only the size of the solar panels changes across designs. The
change in the LCC of the cost-optimal designs to the weather input
changes are small, ±1% compared to the TMY data case, implying
that the optimal designs produced by SDrOP are robust to weather
variations for the baseline case. The datasets used in this analysis varied
from the TMY data: average irradiance varied by +6%/−9%, average
𝐸𝑇0 varied by −23%, and total precipitation varied by +3%/−29%
(shown in the SI Section 5). The TMY data [26] and INRA historical
weather data have hourly resolutions, and the measured data has
hourly and five-minute resolutions.

The optimal design produced when using the measured, five-minute
resolution data has a slightly lower LLP than the design produced with
the measured, hourly resolution data. This means that the former is
more reliable than the latter, suggesting that using higher resolution
weather data produces a system design that can better meet fluctuations
in the irrigation demand over the season. However, this slight increase
in reliability corresponds to a negligible change in the optimal LCC
between the two designs, indicating that there is not a meaningful
difference in the cost-optimum when using weather data with five-
minute or hourly resolution. Given that globally available weather data
often has hourly resolution [26], these results indicate that hourly
weather data is sufficient for cases with similar crops and local weather
patterns to the baseline case.
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Table 4
Benchmark comparison of system designs produced by SDrOP and compass.

Life Cycle Cost (LCC) LCC Saving PV Area Irrigation
[103 USD] [%] [m2] [m3/year]

Compass 8.86 – 4.83 2970
SDrOP, LLPT = 0 5.63 36 1.73 1812
SDrOP, LLPT = 0.15 3.90 56 0.67 1778

4. SDrOP model benchmarking

The SDrOP optimal design was benchmarked against a design pro-
duced by commercial software, and against the field performance data
of a small-scale, solar-powered drip system in Morocco. For both anal-
yses, the benchmarking case was a 0.52 ha olive orchard in Marrakech,
Morocco.

4.1. Commercial benchmark

Two solar-powered drip system designs produced by SDrOP, for
an LLPT of 0 and 0.15, were compared to the designs produced by
a commercial software package. The Lorentz software package, Com-
pass [14], was chosen as the commercial software benchmark because
it has a similar architecture to SDrOP. Compass sizes solar-powered
pumping systems based on an input location and average water de-
mand. Table 4 compares the PV panel area, LCC, and total volume of
water delivered for the designs produced by Compass and SDrOP. The
LCC of the SDrOP optimal designs are 36% and 56% lower than the
Compass designs for an LLPT of 0 and 0.15, respectively.

The cost reduction between the SDrOP and Compass designs is due
to the component sizing. SDrOP produced designs with a solar panel
area that is up to 86% smaller than the Compass result. Additionally,
the Lorentz pump selected by Compass is more expensive than the
locally-available pumps selected by SDrOP. This is because the Compass
pump database is restricted to Lorentz pumps. Compass selected a
700 W pump (Lorentz CS-F4-3) for a drip system with an operating
power of 120 W [18]; this pump is significantly larger and 73% more
expensive than the pump selected by SDrOP.

SDrOP is able to design significantly less expensive systems than
Compass because it uses higher resolution inputs and captures subsys-
tem interactions. Compass takes in a single value for required water
volume, so the yearly irrigation amount is calculated by multiplying
the average daily water demand by the number of irrigation days in the
season. Compass then uses local, average monthly irriadiance data to
determine available power. In SDrOP, the daily crop irrigation demand
is calculated within the operation simulation using daily weather data
and simulated soil water balance dynamics. As a result, the total
irrigation volume calculated by Compass is larger than that computed
by SDrOP (Table 4).

The SDrOP reliability constraint adds modeling flexibility compared
to the Compass software. As shown in Section 3.2.1, varying LLPT can
lead to further system cost savings. For the case with an LLPT of 0, the
optimal design has a higher LCC than the optimal design for an LLPT of
0.15. This is because the latter requires a larger panel area and energy
storage capacity to meet the crop water demand on days with low solar
irradiance. When the reliability constraint is relaxed (LLPT = 0.15),
the design does not include energy storage components, so the opti-
mal power system capacity is reduced, and therefore, less expensive.
Increasing the input data resolution and modeling system performance
in detail enables SDrOP to select appropriately-sized pumps and design
power systems with the minimum required capacity for drip irrigation
applications. As a result, SDrOP is able to produce designs that are
significantly less expensive than those produced with the commercial
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software benchmark.
4.2. Experimental benchmark

The simulated performance of the SDrOP optimal design was bench-
marked against operational data from an existing small-scale, solar-
powered drip system. The goal of this comparison was to determine
if the optimal design produced by SDrOP using TMY weather data was
a physically feasible design.

4.2.1. Experimental and analytical methods
A solar-powered drip irrigation system was installed in Marrakech,

Morocco to collect operational data for a small-scale system. The data
from this field trial were used, in part, to create SDrOP, and as such,
the installed power system was not an optimal design. The field site
was a 0.52 ha olive orchard at an agricultural research site oper-
ated by the International Center for Agricultural Research in the Dry
Areas (ICARDA) and INRA. A hydraulic network of the low-pressure
PC emitters, filters, and a fertilizer unit were installed on the field.
The pipe layout was based on the preexisting crop layout. Pressure
sensors (Lorentz LPS-500, SSIP51-15-G-UC-I36-20MA) and a flow meter
(Dwyer WMT2-A-C-07-10) were installed in the hydraulic network. So-
lar panels (CS6P-270Wp), a surface centrifugal pump (Lorentz CS-F4-3),
and a solar pump controller (Lorentz PS2-600) with integrated MPPT
and datalogging capabilities were installed. The controller recorded
sensor data, pump shut-off instances, and the electrical power con-
sumed by the pump motor. The controller collected data at 10-minute
intervals, and a Lorentz PS 3G communicator sent the data to a server
via the local cellular network. A weather station (HOBO U30-NRC)
was also installed on site to measure irradiance (HOBOS-LIB-M003),
precipitation (Davis S-RGF-M002), temperature and relative humidity
(HOBO S-THB-M008), and wind velocity (Davis S-WCF-M003). The
data were recorded with 5-minute resolution and stored locally on the
device. The specific setup, operation, and maintenance procedures for
the field trial are described further in [18].

The system operating point (pressure and flow rate), pump electrical
power consumption, and local weather data were recorded from May
2018 to April 2019. The data were filtered to remove any excessively
high flow rate and pressure points outside the expected flow rate
and pressure range for the hydraulic system. These outliers can be
attributed to erroneous sensor measurements and a few instances of
leaks or closed valves during system operation. Previous analysis of
the system operation data validated that the SDrOP hydraulics module
(Section 2.2.2) could accurately predict the behavior of a given drip
system hydraulic layout [18]. Insights gained during the implemen-
tation of this field trial were used to identify the architecture and
capability requirements that led to the creation of the SDrOP model
theory presented in Section 2. These requirements are described in
detail in [18].

SDrOP was then used to produce a cost-optimized design for the
benchmarking case, which was the same size as the field trial system.
The irrigation schedule used during the field trial, which was computed
by on-site agronomists, was input to the agronomy module as the
desired irrigation schedule. SDrOP uses TMY weather data, which
means the optimal design was produced without a priori knowledge of
the actual weather in the field. To determine how the optimal design
would have performed in the field, the modified single-diode model
(Section 2.2.4) was used to predict the power output of the optimal
design given the measured on-site weather data from the field trial.
The predicted power output of the optimal design was compared to
the pump power consumption measured during the field trial.

4.2.2. Comparing measured power consumption to predicted optimal design
performance

The power comparison between the predicted optimal design per-
formance and the measured pump power consumption is shown in
Fig. 11. The optimal design has a direct-drive power system with a

panel capacity of 0.27 kWp (peak power production at Standard Testing
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Fig. 11. The power output of the installed panels (dotted line), the measured pump power consumption (circles), and the predicted power output of the optimal design simulated
using measured, on-site weather data (solid line) are shown. The optimal panel area is smaller than the installed panel area, but the simulated power output of the optimal panel
capacity exceeds the measured power consumption for 92% of the pump operating points. This indicates that the installed power system was oversized, allowing irrigation to start
earlier in the day, but that the optimal design would have been able to provide enough power to operate the field system.
Conditions [47]) and an LCC of 3900 USD. The predicted output of the
optimal panel capacity exceeds the measured power consumption for
the majority of the pump operating points. Over the course of the field
trial, 92% of the pump operating points fall within the predicted power
production range of the optimal design, indicating that the optimal
power system would have been able to operate the installed system
with less than 10% failed irrigation events. These results show that
the optimal design would have been able to reliably operate the field
system in the on-site weather conditions from May 2018 to April 2019.

The data also show that the measured power output of the installed
panels was always greater than the predicted power output of the
optimal panel capacity and the measured pump power consumption;
this means that the installed panel capacity was oversized for this
field. The inset of Fig. 11 shows that some of the pump operating
points are inside the power production range of the installed system,
but horizontally outside of the predicted power production range of
the optimal design. The installed panel capacity enabled irrigation to
start earlier in the day – when solar irradiance was lower – than the
optimal panel capacity would have because the installed system was
oversized. However, the optimal system would have provided enough
power for these irrigation events, starting later in the day. As such,
the pump operating points that are horizontally outside the optimal
predicted power production are still counted as being within range for
the optimal system.

5. Discussion

The sensitivity analyses and benchmarking results presented in this
paper demonstrate how location-specific case parameters influence a
cost-optimal drip system design. These results also illustrate how gaps
in available software tools and local component availability impact
the design space. Although this paper focuses on a specific case study,
the analytical insights can be applied more generally as guidelines for
designing and operating low-cost, solar-powered drip systems, which
may be of interest to irrigation engineers and researchers globally. In
addition, the modular SDrOP architecture makes it easy to adapt for a
broader range of case studies.

5.1. Sensitivity analysis

This work presented several sensitivity analyses that can be used to
inform system cost reduction and the implementation of solar-powered
drip systems using the low-pressure PC emitters.
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5.1.1. Field area
The sensitivity of the cost-optimal design to field area provides

insights on both component selection and irrigation scheduling. The
physics-based relationship between field area and power system capac-
ity suggests an alternative for irrigation scheduling that would reduce
system cost. If larger fields were operated in subsections, the required
operating power at any given time would be smaller, which would
reduce the power system capacity and cost. As such, operating the
system on a sequential irrigation schedule that divides the field into
subsections could result in lower cost designs. The optimal designs for
this study were all direct-drive designs because batteries and water
storage tanks have high replacement and initial costs, respectively.
However, if large fields are irrigated in subsections, energy storage op-
tions may become cost-effective. In this scenario, the trade-off between
decreasing the panel capacity by reducing the system operating point
and increasing energy storage capacity would dictate the behavior of
the LCC per hectare curve for larger field areas.

For the field area sensitivity analysis, it is also assumed that pump
cost scales with maximum pump operating power. This is a reasonable
assumption based on the cost of raw materials, but in reality, the pump
retail cost is highly dependent on the manufacturer, distributor, and
local market conditions. As such, this simplified pump cost model may
be under- or overestimating the pump cost, especially for larger fields.

5.1.2. Reliability constraint
The sensitivity study of the cost-optimal design to the reliability con-

straint, LLPT, shows that a small relaxation of the reliability constraint
leads to a large reduction in the optimal system LCC for the baseline
case. The point of greatest return on the LLPT sensitivity plot (Fig. 9(a))
is determined by the case definition parameters, namely the selected
crop, local weather patterns, soil properties, and the field area. As such,
the expected shape of the LLPT sensitivity plot could be predicted for
different cases. If the selected crop is highly sensitive to water stress,
unlike the olive trees studied here, it can be expected that the LLPT at
the point of greatest return will be smaller than 0.1. For fields larger
than 2 ha, it can be expected that there is an even greater opportunity
for LCC reduction as LLPT increases. Similarly, for locations with high,
consistent solar irradiance, such as Morocco, it can be expected that
the magnitude of the cost reduction will be similar to that of the case
study presented here.

The results also show that a stricter reliability constraint (decreasing

LLPT from 0.1 to 0), altered the system design architecture from a



Applied Energy 323 (2022) 119563F. Grant, C. Sheline et al.
direct-drive design to a design that includes a battery. This indicates
that increasing the reliability constraint can eventually force the opti-
mal design to include energy storage options. The numerical threshold
of this architectural shift will depend on the specific case, but it will
depend on the same parameters that govern the cost trade-off between
decreasing system reliability and meeting the crop water demand. The
implication is that the case definition and the system operation, i.e. the
irrigation amount, can have a significant impact on the optimal design
architecture and cost.

5.1.3. Weather variation
Although it was shown that the optimal design for the baseline case

is robust to weather variation for the baseline location and crop type,
this robustness may not hold for cases with more water-stress sensitive
crops or more variable weather conditions. The weather sensitivity
analysis presented here can be used to approximate the safety factors
on the power system component capacities when designing for such
cases. This analysis could also be applied to predict how variation due
to climate change might impact system reliability and performance in
a given location.

5.2. SDrOP model benchmarking

SDrOP produced an optimal design for the benchmarking case –
a 0.52 ha olive orchard in Marrakech, Morocco – that has a power
system capacity 7 times smaller and 56% less expensive than that of
the commercial software, Compass (Section 4.1). This dramatic size
reduction demonstrates the benefits of capturing the behavior and
interactions of the subsystems in a single model. Unlike Compass,
SDrOP is able to leverage the trade-off between system reliability and
component capacities when optimizing for the lowest-cost design. As a
result, SDrOP can produce more appropriately-sized pumps and power
systems for a given case compared to software tools that do not design
systems holistically.

The measured power consumption of a small-scale, low-pressure,
PC drip system was compared to the predicted power production of
the optimal design for the same field area (Section 4.2.2). Based on
the simulated power output, the optimal design would have been able
to power 92% of the irrigation events during the field trial. This
result provided confidence that SDrOP was able to produce an optimal
design, without a priori knowledge of the weather, that would be able
to operate reliably in real-world conditions. While further field trial
validation is necessary, this result highlights the potential of SDrOP to
be used as a design tool for low-cost, solar-powered drip systems on
small farms.

5.3. SDrOP model limitations

The field area sensitivity analysis shows that the hydraulic compo-
nents make up 54–77% of the system LCC, and the initial cost makes
up 50–70% of the system LCC. Future work to improve smallholder
adoption of drip irrigation should focus on reducing hydraulic costs
through layout optimization. Similarly, as smallholders are particularly
sensitive to initial cost, government or NGO subsidies could make these
systems more accessible to smallholders.

The LLPT sensitivity analysis demonstrated that operational reliabil-
ity influences the optimal design LCC and component capacities. This
suggests that concurrently optimizing the component capacities and the
system operation scheme could create further opportunities for system
cost reduction. This can be accomplished by converting currently fixed
SDrOP parameters – the pump operating point, the timing of panel
and energy storage use, and the daily start time of irrigation – into
design variables. In addition to further cost reduction, the results of
this reformulated optimization problem could provide insight on how
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to operate the system efficiently and reduce component degradation.
For the Moroccan case studies presented in this paper, the emitters
are assumed to be pressure compensating, the layout of the hydraulic
network is prescribed, and the pump database is limited to surface,
centrifugal pumps. These assumptions are pertinent to the presented
cases, but if SDrOP is to be more broadly applicable, its component
selection capabilities need to be expanded. The hydraulics module can
be adapted to include other irrigation devices, including non-pressure
compensating emitters and sprinklers. For cases with groundwater
wells, submersible pumps can be included in the database. Further
research can be done on the efficiency and cost of the electronic compo-
nents that interface with the power system and pump. Addressing these
limitations could enable further system cost reduction and would make
SDrOP more broadly applicable as a tool for designing solar-powered
drip irrigation systems.

5.4. Study limitations and future work

Experimental data was used as a benchmark to give confidence
that SDrOP was producing realistic optimal designs. This result can
be further supported by installing these designs and measuring their
reliability in real-world conditions. The next step is to conduct field
trials with the optimal designs for various field areas and crops, taking
measurements over multiple growing seasons to capture the effects
of environmental variability. The results would be used to compare
predicted and measured reliability, and to assess the need for a safety
factor on the optimal designs.

The sensitivity analyses presented in this paper suggest that further
cost reduction can be achieved by irrigating fields in subsections.
Future work can determine how to practically operate a field with
subsections such that it does not substantially interfere with the users’
other tasks. SDrOP can design systems for farms larger than 2 ha,
however, to expand the modeling capabilities to larger farms, the oper-
ation simulation may need to be modified to reflect how these farmers
operate their irrigation on these farms. The practice of deficit irrigation,
or water-stressing the crops by irrigating less than the crop water
demand, could also be considered as a cost-saving measure. As the LLPT
sensitivity analysis shows, a slight decrease in system reliability can
lead to significant system cost reduction, so deficit irrigation may be
cost-effective without reducing yield for water-stress resistant crops.
In addition, a more accurate crop evapotranspiration model could be
incorporated in the agronomy module to determine the sensitivity of
the optimal design to the crop water demand estimation. The agronomy
module presented in this paper is based on FAO 56 and uses a single
crop coefficient as a first pass at modeling the agronomy subsystem.
This model provides a simple, standardized, conservative estimate of
crop water demand known worldwide. However, more detailed agron-
omy models, such as AquaCrop [39] and dual crop coefficient models,
could be employed in future work to analyze the trade-offs between
irrigation amount and drip system component capacities as well as
provide more robust crop yield estimates.

The actual performance of the optimal design is highly dependent
on how the farmer chooses to operate the system. It is ultimately
this performance over multiple seasons that will shape the perceived
robustness and reliability of these systems and influence adoption
among smallholders. As such, any adjustments to irrigation scheduling
should be considered in the context of the farmers’ needs and expertise.
Currently, SDrOP computes the irrigation schedule based on local
weather data, crop properties, and local soil properties, but in reality
farmers may base their irrigation schedule on the history of a particular
field and crop yield. Farmers may have communally-assigned water
usage times or amounts, or may be constrained by the cost of water
in their location. Therefore, farmers may feel more comfortable using
a system that allows them to operate within their unique constraints
and preferences. More research should be conducted with farmers to
determine their existing agronomic practices and willingness to change

those practices with a new technology. In addition, these systems could
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be designed to accommodate other tasks, such as storing water for
animal husbandry or powering lights, chargers, radios, TVs, etc. Future
work will need to analyze a user’s willingness to pay for these added
features.

6. Conclusions

Smallholder farmers are vital stakeholders in the process of sus-
tainable agricultural intensification, but often lack access to capital,
information, and agricultural inputs. This paper presents the Solar-
Powered Drip Irrigation Optimal Performance model (SDrOP), a holistic
model for optimizing low-cost, solar-powered drip irrigation systems
for small farms. The aim of reducing the system cost is to make
solar-powered drip irrigation more accessible to smallholders, who
are both cost-sensitive and risk-averse. Unlike existing commercial
tools, SDrOP captures subsystem interdependencies and leverages the
trade-off between system performance and component capacity when
optimizing for low-cost designs. The sensitivity analyses conducted
in this study provide insights on the system cost-drivers, component
selection, irrigation schedule, and robustness to the environment. The
sensitivity of LCC to field area revealed market-based and physics-
based cost drivers. The former is due to a potential gap in the local
pump market for operating low-pressure systems with the novel, low-
pressure emitters. The latter is due to the cubic scaling relationship
between system operating power and flow rate that is amplified for
large field areas. It was also observed that the sensitivity of LCC to
the reliability constraint is heavily dependent on case parameters, and
that the irrigation schedule influences the cost-optimal design. These
results suggest that co-optimizing component capacities and the system
operation could enable further cost savings. Finally, it was shown
that the optimal design for the baseline case was robust to weather
variations, but cases with highly variable irradiance or water-intensive
crops may be less robust to environmental variations.

When compared to commercially available software, SDrOP was
able to reduce the drip system life cycle cost (LCC) by up to 56%
for a benchmark Moroccan olive orchard. In addition, it was shown
that a lower-cost optimally designed system could operate an existing
small-scale drip system, where 92% of the measured irrigation events
fell within the predicted power output range of the optimal system.
This comparison provides confidence that SDrOP can produce optimal
designs, without a priori knowledge of the local weather, that would
operate reliably in real-world conditions. Field trials will be conducted
to further validate the SDrOP results, gain insights on system imple-
mentation, and to gather feedback from farmers on their perception
of the system’s value and performance. These factors will ultimately
determine the success of the adoption of solar-powered drip irrigation
by smallholders.
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Table 5
Local economic parameters for Morocco.
Source: Cost data sourced from [10] and local contractor invoices.

Parameter Definition Unit Value

𝑘𝑐𝑝,𝑂𝑙𝑖𝑣𝑒 Crop price coefficient – 0.55
𝑘𝑖 Installation coefficient – 0.11
𝐼𝑅 Interest rate – 0.035 [22]
𝐹𝑅 Inflation rate – 0.02 [22]
𝑘𝑚 Maintenance coefficient – 0.01
𝑈𝐶𝑝𝑢𝑚𝑝 Pump unit cost

[ USD
kW

]

450

𝑈𝐶ℎ𝑦𝑑 Pipe network unit cost
[ USD

ha

]

2700
𝑈𝐶𝑒𝑚𝑖𝑡 Emitter unit cost [USD] 0.05

𝑈𝐶𝑝𝑣 Panel unit cost
[

USD
m2

]

113

𝑈𝐶𝑏𝑎𝑡𝑡 Battery unit cost
[ USD

kWh

]

355.32

𝑈𝐶𝑡𝑎𝑛𝑘 Tank unit cost
[

USD
m3

]

110

Table 6
PSO algorithm parameters.
Parameter Value

Swarm size 20
Convergence margin 10 USD
Inertia factor 0.7
Self confidence 1.5
Swarm confidence 1.5
Time step 10
Initial velocity coefficient 30
Convergence steps 10
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Appendix A

A.1. Local cost data

Local cost data were used determine the SDrOP cost parameters.
These numbers were obtained while working with the local research
partners and contractors. They were converted to unit values when
necessary, as seen in Table 5, so they could be applied to a variety
of farm sizes.

A.2. PSO algorithm parameters

The following parameters were used in the PSO algorithm. These pa-
rameters were selected because they produced repeatable convergence
for the range of cases in this study [41,42] (Table 6).
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Table 7
AC centrifugal pump models
in SDrOP database.

Model name

Lowara 12GS15
Lowara 16GS22
Lowara 1GSL02
Lowara 1GSL03
Lowara 2GS02
Lowara 2GS03
Lowara 32-125-02
Lowara 32-125-03
Lowara 32-160-02
Lowara 32-160-03
Lowara 32-160-05
Lowara 32-200-11
Lowara 32-250-11
Lowara 32-250-15
Lowara 40-200-15
Lowara 40-250-30
Lowara 4GS03
Lowara 4GS05
Lowara 4GS07
Lowara 50-250-30
Lowara 50-250-40
Lowara 6GS05
Lowara 8GS07
Lowara 8GS11
Lowara 8GS15
ecocircB 23-5
ecocircB 6 m
ecocircXLD 40-80-11F
ecocircXL 25-100
ecocircXL 25-40
ecocircXL 32-120F
ecocircXL 32-60
ecocircXL 40-100-12F
ecocircXL 40-180F

A.3. Pump database

The pump database was populated with the following AC centrifugal
pump models. These pumps were in the appropriate size range and,
based on fieldwork with contractors, their performance characteris-
tics were representative of the locally-available pumps in Morocco
(Table 7).

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.apenergy.2022.119563.
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